Effects of low-level laser therapy on human osteoblastic cells grown on titanium.

نویسندگان

  • Alice Dias Petri
  • Lucas Novaes Teixeira
  • Grasiele Edilaine Crippa
  • Marcio Mateus Beloti
  • Paulo Tambasco de Oliveira
  • Adalberto Luiz Rosa
چکیده

The aim of this study was to investigate the effects of low-level laser therapy (LLLT) by using gallium aluminum arsenide (GaAlAs) diode laser on human osteoblastic cells grown on titanium (Ti). Osteoblastic cells were obtained by enzymatic digestion of human alveolar bone and cultured on Ti discs for up to 17 days. Cells were exposed to LLLT at 3 J/cm2 (wavelength of 780 nm) at days 3 and 7 and non-irradiated cultures were used as control. LLLT treatment did not influence culture growth, ALP activity, and mineralized matrix formation. Analysis of cultures by epifluorescence microscopy revealed an area without cells in LLLT treated cultures, which was repopulated latter with proliferative and less differentiated cells. Gene expression of ALP, OC, BSP, and BMP-7 was higher in LLLT treated cultures, while Runx2, OPN, and OPG were lower. These results indicate that LLLT modulates cell responses in a complex way stimulating osteoblastic differentiation, which suggests possible benefits on implant osseointegration despite a transient deleterious effect immediately after laser irradiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

  Objective(s): Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collage...

متن کامل

Effect of Low–Level Helium-Neon Laser Irradiation on the Release of Interleukin 6 and Basic Fibroblast Growth Factor from Cultured Human Fibroblasts in High Glucose Medium

Purpose: Low level laser therapy is suggested as a new therapeutic method in diabetic wound healing. This survey aimed to evaluate the effects of low level laser on human fibroblasts cultured in high glucose cultures. Materials and Methods: The human skin fibroblasts were cultured under standard condition. The cells were cultured in high glucose culture medium (15mM/L) for a week and two weeks ...

متن کامل

The Effects of Low Level Laser Therapy on the Expression of Collagen Type I Gene and Proliferation of Human Gingival Fibroblasts (Hgf3-Pi 53): in vitro Study

Background  Recent investigations show that both proliferation and secretion of macromolecules by cells can be regulated by low level laser therapy (LLLT). The aim of this study was to determine whether LLLT could induce a bio-stimulatory effects on human gingival fibroblasts (HGF3-PI 53). Therefore, the effect of laser irradiation on human gingival cell proliferation and collagen type I gene ...

متن کامل

Evaluation of the effect of low-level laser irradiation on viability and ROS production in human hair follicle stem cells

Background: Low-level lasers are used for various medical applications including wound healing and hair loss treatment. Cell Therapy using skin stem cells could be a novel approach to hair transplantation. However, there is no study on the effect of low-level laser on the hair follicle stem cells. So, in this study, we investigated the effect of low level laser irradiation on viability and ROS ...

متن کامل

Effect of low level laser irradiation with vitamin A on cell viability and apoptosis induction of human skin melanoma

Background: Skin cancer is the most prevalent type of cancer and melanoma is the deadliest kind of skin cancer in the world. Due to enhanced induction of apoptosis and ROS levels, low-level lasers can be utilized to destroy skin cancer cells. Lasers are used to treat some skin lesions. Vitamin A is beneficial in the prevention and treatment of skin cancer. Vitamin A inhibits the pathway of canc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Brazilian dental journal

دوره 21 6  شماره 

صفحات  -

تاریخ انتشار 2010